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PREFACE 
 
 
 
Over the past few decades, studies of the properties of the nanosystems 

have occupied one of the central places in solid state physics. Instead of 
the traditional name “solid state physics”, the term “nanophysics” is 
increasingly used. More and more attention is being paid to nanostructures 
such as quantum dots, quantum wells, quantum wires, nanotubes, 
mesoscopic rings, and two-dimensional electron gas. The increased 
interest in these systems is due to several reasons. They are functional 
elements of modern instruments and devices. Methods of preparing the 
nanostructures under laboratory conditions are steadily improving. They 
are interesting to theoreticians because they are a convenient testing 
ground for testing the new methods for studying the dynamics of 
quasiparticles in limited volumes, when the quantum effects are 
significant. Of particular interest are the properties of electron 
nanostructures in a magnetic field due to hybridization effects of 
dimensional and magnetic quantization of electron motion. 

In modern solid state physics, along with traditional three-dimensional 
electron systems, the low-dimensional electron systems (0D – quantum 
dots, 1D – quantum wires and nanotubes, 2D – two-dimensional electron 
gas (2DEG) and quantum rings) are increasingly studied. The motion of 
conduction electrons in low-dimensional systems is limited by narrow 
quantum wells. This essentially determines both the energy spectrum of 
the electrons, unperturbed by the impurity potential, and the nature of the 
formation of bound electron states on impurity atoms. 

The goal of this book is to present a theory of the localization of 
conduction electrons in the aforementioned nanosystems within the 
framework of the local perturbation method, considered as a general 
theoretical approach, that is valid in the description of electron systems of 
any dimension and type of confinement potential in the presence of a 
magnetic field. The generality of the approach used consists, in particular, 
in that the derivation of the equation for the spectrum of impurity levels is 
carried out from the “first principles”, which include the use of the 
quantum theory of scattering as the initial equations. The book also uses 
methods of quantum field theory. 

The universality of the approach proposed here is that the specific type 
of nanosystem and the nature of the confinement potential are not 
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specified from the very beginning. The choice of a particular nanosystem 
occurs only at the stage of calculating the intermediate expressions for the 
overlap integrals, which are included in the equation for impurity levels. 
Among all possible models of the scattering potential of an impurity atom, 
a potential of a special form is chosen is the first-rank operator of the 
theory of degenerate perturbations. 

The magnetic localization of electrons at impurity atoms considered 
here, due to the quasi-one-dimensional motion of electrons in a strong 
magnetic field, stimulated studies of the physical manifestations of the so-
called magnetoimpurity states in low-dimensional systems. The actual 
physical effects will be described in detail in the book: quantum 
oscillations of the thermodynamic quantities of 2DEG with impurity 
states, the new maxima in the frequency dependence of the high-frequency 
conductivity tensor 2DEG with impurity states, the new branches of 
magnetoplasma and electron spin waves in inversion layers, a cross 
situation in the spectrum of spin waves, joint the effect of impurity states 
of phonons and electrons on the spectra of elastic waves in 2DEG in 
inversion layers. 

In the physics of disordered systems, the new physical phenomena 
have been discovered and are actively discussed: the Mott transition, 
interference additives to conductivity, Anderson electron localization, 
weak localization, and others. Since extensive scientific literature is 
devoted to these effects, we will not discuss them in this book. We confine 
ourselves to a description of the effects caused by the resonant scattering 
of quasiparticles by isolated impurity atoms, which can localize electrons 
and phonons in low-dimensional systems: quantum dots, quantum wires, 
nanotubes, mesoscopic rings, in a two-dimensional electron gas. The 
consideration is based on the I. Lifshits model, within the framework of 
which the short-range impurity atoms are located at random points in the 
system. The role of single impurity center in such systems increases with a 
decrease of their size.  

In our book, for the first time in the world scientific literature, we plan 
to describe the application of the local perturbation method for a 
theoretical description of the physical properties of a fairly wide range of 
nanosystems. 

The authors are grateful to N.V. Gleizer, S.V. Kofanov, N.V. Ulyanov, 
A.I. Shurduk, A.D. Rudnev for discussing the issues outlined in the book. 
The authors are also grateful to H. Edwards and T.I. Rashba for help in 
preparing the manuscript for printing. 
 





INTRODUCTION 

 

 

 

The successes of the theory of a solid with an ideal crystal lattice are 

largely due to the existence of translational symmetry of the lattice. This 

symmetry makes it possible to introduce a quasimomentum of elementary 

excitation in a solid, to reveal the band character of the energy spectrum of 

bodies. Symmetry allows using the methods of quantum mechanics, 

statistical physics and kinetics to theoretically describe the properties of 

ideal solids. An extensive scientific literature is devoted to the properties 

of such systems [1 – 3]. However, the crystal lattice of a real solid is far 

from ideal. As a rule, it is distorted by alien impurity atoms, vacancies, 

dislocations, and other periodicity violations. In addition, with a change in 

temperature, a solid can undergo a phase transition and go into a liquid 

state. The idea of an ideal lattice in this state is meaningless. The needs of 

technology and the logic of the development of science compel physicists 

to deal with such systems as well. 

Systems characterized by violations of the strict periodicity of the 

lattice are called disordered. In the last sixty years, the structure and 

properties of condensed disordered systems have attracted more and more 

attention from both physicists and representatives of related sciences. The 

reasons for this are, on the one hand, the successes of solid state physics 

(primarily the physics of semiconductors), and on the other hand, the fact 

that it is disordered systems (crystals with impurities, liquid metals, 

amorphous bodies, biopolymers, etc.) that are systems of general 

positions, and ordered structures such as a perfect crystal lattice are 

idealized objects. The rapid and ever-growing development of research on 

the most diverse aspects of the physics of disordered systems has led to the 

fact that now we can speak of an important, vast and meaningful field of 

solid state physics. 

At the origins of the theory of disordered systems were such 

outstanding scientists as F. Anderson, I.M. Lifshits and N.F. Mott. It is 

thanks to their pioneering ideas and papers [4 – 7] that a rapidly growing 

stream of publications on the theory of disordered systems appeared in the 

mid-1950s. At present, the physics of disordered systems has deep and 

general theoretical concepts and developed mathematical apparatus, a 

large number of various experimental results, and an extremely rapidly 

growing field of applications. Over time, monographs appeared on its 
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various aspects [8 – 10]. Many concepts that have arisen in the theory 

(self-averaging, Anderson localization, Anderson’s transition, large-scale 

localization theory, weak localization) gradually entered textbooks [2, 11]. 

An important section of the theory of disordered systems is associated 

with the study of the energy spectrum of single-particle excitations and 

their quantum states. The absence of translational invariance radically 

reconstructs the statistical picture of these excitations and the associated 

mechanism of kinetic phenomena. The systematics of single-particle states 

turns out to be less clear, and the structure of the spectrum is more diverse 

than in the ordered case. Therefore, even the one-particle approximation 

makes it possible to formulate a number of basic concepts, to see many 

characteristic features and qualitative features of disordered systems, and 

to study various interesting phenomena. 

One of the most widespread versions of the one-particle approximation 

is the problem of the motion of a particle in a random field created by 

impurity atoms of finite concentration, randomly distributed over the sites 

of the crystal lattice. In this case, the Hamiltonian of the interaction of 

electrons with impurities has the form    i
i

U r U r R  , where 

iR  is the radius vector of the impurity located in the i -th site. The points 

iR  are random, located with an average density determined by the 

concentration of impurities. Thus, we are dealing with the problem of an 

electron in a random field of impurities, the state of which can be found by 

solving the Schrödinger equation with a random Hamiltonian 

 
2

2
U r E

m
      , 

where m  is the mass of an electron, E  is its energy,   is the wave 

function of a stationary state, and  is a quantum constant. 

The physics of disordered systems develops through a series of stages. 

In this case, the following are investigated: isolated impurity atoms in 

individual lattice sites, multi-impurity systems, amorphous state, many-

particle systems with a non-ideal lattice (for example, doped 

superconductors). In passing to the study of low-dimensional systems, 

systems with a small number of particles, the role of impurity atoms 

increases. Even the embedding of one alien atom into such a system can 

lead to the appearance of a number of properties that have no analogues in 

massive samples. 
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The theory of localization of quasiparticles on an isolated impurity in a 

crystal was constructed in general form by I.M. Lifshits in Refs. [12 – 18]. 

The method of local perturbations developed by him was successfully 

used in the theory of the electron energy spectrum of metals and 

semiconductors [19 – 23], in the theory of the crystal lattice oscillation 

spectrum [24, 25], the spectrum of spin waves in magnetics [26], in the 

theory of liquid metals [27 – 30]. 

The method of local perturbations was further developed in the theory 

of electron and phonon energy spectra of nonideal metals and 

semiconductors in Refs. [31 – 54]. 

I. Lifshits showed that impurity atoms and other lattice defects 

significantly change the energy spectrum of the conductor. He predicted 

local oscillations of atoms around an isolated impurity atom. The 

frequencies of local oscillations lie outside the spectrum of an ideal 

crystal. Along with local states, the spectrum of quasiparticles can contain 

singular points located inside the unperturbed zone. If such a state falls 

into a region where the unperturbed density of states is low, then in its 

vicinity there is a strong localization of the spectral density of states. The 

states that have arisen are called quasilocal (resonant) states [43, 45]. The 

wave function of this state is localized near the impurity, decaying at a 

finite distance from it. With time, such a state decays, passing into states 

of a continuous spectrum. These states were found experimentally in 

experiments with neutron scattering by crystals [55]. Local and quasilocal 

states of phonons, electrons, and magnons in bulk samples are described in 

the literature cited above. This approach in the physics of disordered 

systems is called the Lifshits model. 

Along with the Lifshits model, there is also Anderson’s model [56] for 

studying the spectrum of disordered systems. In Anderson’s model, 

various atoms and associated potential wells of electrons of different 

depths are located at the sites of a regular lattice. On the contrary, in the 

Lifshits model, the same potential wells are randomly located in space. It 

is assumed that the potential of the well is short-range, and the average 

distance between the wells is large in comparison with the radius of action 

of the potential and the radius of the wave function of the impurity state. 

The effect of a quantizing magnetic field on impurity states of 

electrons in massive metals and semiconductors based on the Lifshits 

model is considered in papers [57 – 62] and in the dissertation of one of 

the authors [63]. 

It is known that not every impurity in a three-dimensional conductor 

that attracts electrons is capable of forming a bound state [64]. For such a 

state to appear, the potential well, into which an electron falls in the 
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impurity field, must be sufficiently deep and wide. In other words, it is 

required that the depth of the well exceeds the uncertainty of the particle 

energy 
2

2
0mr

, where 0r  is the radius of the well. If this condition is 

not met, the bound state of the electron is not formed. Only potential 

scattering of electrons by an impurity center occurs, accompanied by an 

insignificant phase shift of the electron wave function. The situation 

changes in a magnetic field. The motion of a particle in this field is similar 

to one-dimensional, and in the one-dimensional case (and in the two-

dimensional) a bound state arises in a well of any intensity. Thus, the 

magnetic field localizes electrons on an attractive impurity even in the 

case when localization is impossible without a magnetic field. In a 

magnetic field on weak impurities, specific bound and resonant states of 

electrons on donors and holes on acceptors appear, and are caused by the 

joint action of an attractive impurity and a magnetic field on the particle. 

For this reason, such states are called magnetoimpurity states. 

The idea of magnetic localization of carriers on isolated impurity 

atoms goes back to the papers by Skobov [65], Bychkov [66], and 

Demkov and Drukarev [67, 68]. Skobov obtained an exact formula for the 

amplitude of electron scattering by a short-range impurity center in a 

magnetic field and discovered its resonant character. Bychkov predicted a 

bound state of an electron, split off by an attracting impurity from the 

ground Landau level by an amount [65, 66] 

2
1

2
c

a

l


 
   

 
, 

where c
eH

mc
   is the cyclotron frequency [64], cl

eH
  is the 

magnetic length [64], a  is the scattering length. A more precise equation 

for the binding energy   was obtained by Demkov and Drukarev [67]. 

Bychkov noted that the Landau quantization leads to the 

“multiplication” of bound states. An attracting impurity of small radius, 

removing the degeneracy in the position of the center of the Larmor 

“orbit”, splits off one impurity level from each Landau level. The levels 

split off from the second, third, etc. Landau levels fall into the region of 

the continuous spectrum and turn out to be quasi-local. Being in resonance 

with the Landau states, they acquire a finite width  , inversely 

proportional to the electron lifetime near the impurity. This time is 

associated with the possibility of the transition of electrons to the lower 

Landau subbands. 
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From the point of view of the theory of scattering, the 

magnetoimpurity states of electrons are the Breit-Wigner resonances 

known in quantum mechanics in the scattering of electrons by impurity 

center of attraction in a magnetic field [64]. They correspond to the 

complex poles of the scattering amplitude located on the nonphysical sheet 

of the Riemann surface. The positions of magnetoimpurity resonances 

arising on small-radius impurities are given by the formula [57, 58]: 

1

2
N c N 

 
   

 
, 

where 0,1,...N   is the resonance number. Their half-widths are [58]: 

     

1
2 1

22N
c n

N n


 
    

 
 . 

The summation is performed here over those n  that are smaller than N . 

Under certain conditions, the widths of the magnetoimpurity levels are 

small in comparison with the magnitude of the splitting off  , and the 

latter is large in comparison with the impurity and thermal broadening of 

the neighboring Landau level, i. e., the magnetoimpurity states are well 

defined and stable with respect to impurity and thermal effects. The 

concept of magnetoimpurity states [57, 58] was used by A.M. Ermolaev 

and M.I. Kaganov to explain the beats in the de Haas-van Alphen effect, 

experimentally discovered by N.B. Brandt and L.G. Lyubutina (see 

Ref. [69]) in Bi  with impurities Te  and Se . Brandt and Lyubutina noted 

that if the oscillations are due to electrons, beats in the plot of the magnetic 

susceptibility versus field appear only when Bi  is doped with donor 

impurities Te  or Se . Replacement of donors with acceptors ( Pb ) leads 

to the disappearance of beats. If the oscillations are caused by holes, the 

situation is the opposite: beats exist when bismuth is doped with acceptors 

and are absent if the acceptors are replaced by donors. This feature of the 

effect is adequate to the concept of magnetoimpurity states of electrons on 

shallow donors and holes on acceptors [63]. As the magnetic field 

increases, the magnetoimpurity levels, like the Landau levels, move across 

the Fermi boundary with a different frequency, which leads to beats in the 

de Haas-van Alphen effect. The difference between these frequencies is 

0
F

W W



 , 
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where F  is the Fermi energy, 0W  is the frequency of the Lifshits-

Kosevich oscillations [1, 2]. It was also established in Ref. [69] that the 

beat frequency depends on the type of impurity and is proportional to the 

oscillation frequency 0W . The noted here and other features of the beat 

effect were explained in Refs [57, 58]. 

The studies mentioned above, as well as the experimental detection of 

magnetoimpurity states in experiments on photoabsorption in 

semiconductors (for references to original papers, see the review paper 

[70] by S.P. Andreev) stimulated the appearance of many papers devoted 

to magnetoimpurity states arising at both Coulomb and neutral impurity 

centers in semiconductors [71 – 75]. Ref. [71] considers Raman scattering 

of light in conductors with magnetoimpurity states of electrons. They give 

rise to an additional contribution to the Faraday angle of rotation [72] and 

the specific features of the chemical potential of metals [73]. In Ref. [74], 

it was shown how these states affect the phonon spectrum in nonideal 

conductors. In Ref. [75], these states were studied by a functional method. 

They were also studied in papers [76 – 79]. In particular, in Refs. [78, 79], 

a model potential of an impurity atom (Gaussian separable potential) was 

used. 

In papers [80 – 82], the contribution of magnetoimpurity states to the 

transverse magnetoresistance of metals in strong fields is calculated. It 

turned out that this contribution contains a part that is monotonic 

depending on the magnetic field: 

0
H

a

r
    , 

where 

  0 2
0

m

ne



  

( n  is the concentration of electrons; 0  is the free path time due to 

potential scattering of electrons by impurities in the absence of a magnetic 

field); 

      F
H

cp
r

eH
  

is the Larmor radius ( Fp  is the Fermi momentum). The expression   

refers to single crystals with closed Fermi surfaces. It increases linearly 

with the field in the region 0 1c  , where saturation is predicted by 
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the classical theory. The oscillating contribution leads to beats in the 

Shubnikov-de Haas effect. 

Back in 1929 P.L. Kapitsa found that the transverse magnetoresistance 

of polycrystalline samples increases linearly with field in strong magnetic 

fields. This law was explained in the paper by I.M. Lifshits and 

V.G. Peschansky [83]. In the papers by A.M. Ermolaev [80 – 82] 

considered another reason for the linear increase in the magnetoresistance 

of metals. 

The main reason for the existence of various types of weakly damped 

electromagnetic waves in metals in an external magnetic field is the 

collective motions of conduction electrons [84, 85]. There are two types of 

such motions. 

The first of them is the collective drift (Hall or polarization) of 

electrons in a plane perpendicular to the magnetic field. In uncompensated 

metals, the Hall drift leads to the existence of helicons (for references to 

original papers, see Refs. [84, 85]). In semimetals, the collective 

polarization drift due to temporal dispersion leads to the appearance of 

magnetoplasma waves. Longitudinal drift motion of electrons (along the 

magnetic field) in quantizing magnetic fields leads to the possibility of the 

existence of collective oscillations with a linear spectrum (quantum 

electromagnetic waves). 

Another type of collective motions, leading to the existence of weakly 

damped electromagnetic excitations, is associated with various resonances 

in the electron-hole system. Thus, near the frequencies of cyclotron 

resonance, cyclotron waves exist in metals. Doppler-shifted cyclotron 

resonance results in a variety of dopplerons. In the vicinity of resonance 

frequencies corresponding to transitions between magnetic surface levels 

the specific surface waves appear. It can be argued that, in general, 

corresponding electromagnetic waves should exist near any resonance, and 

the resonance frequency coincides with the limiting frequency in the 

spectrum of such collective excitations. 

In Refs. [59 – 62, 86 – 90], the new classes of weakly damped waves 

in metals were predicted, which arise due to resonances in the scattering of 

electrons by attractive impurities in a magnetic field. 

It was noted above that impurity atoms in the metal play a double role. 

On the one hand, they limit the mean free path of conduction electrons and 

determine the collisional damping of electromagnetic waves, which is 

usually described by introducing a phenomenological constant   – 

collision frequency. On the other hand, impurity atoms can radically 

change the structure of the electron energy spectrum of a metal, leading to 

the appearance of the magnetoimpurity states described above. Such states 
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correspond to resonances in the scattering of electrons by an attractive 

impurity in a magnetic field. They appear as Breit-Wigner peaks in the 

energy dependence of the scattering probability and collision frequency of 

electrons. These peaks exist against the background of a smooth 

dependence due to potential electron scattering. 

Magnetoimpurity states open new channels for resonant absorption of 

electromagnetic waves in conductors. The frequencies of resonant 

transitions of electrons between filled magnetoimpurity levels and free 

Landau levels are equal s cs   , where 0,1,...s   is the 

resonance number. If we neglect the widths of the levels involved in the 

transitions, the real part of the conductivity, which determines the 

damping of the waves, will have a root singularity, when 0s   . 

This feature reproduces the feature of the density of states of electrons at 

the Landau level participating in the transition. It follows from the 

Kramers-Kronig dispersion relations that the root singularity will have the 

imaginary part of the conductivity at 0s   . On the features of the 

imaginary part of the conductivity, new branches of the spectrum of 

electromagnetic excitations of the metal are formed. Waves appearing 

below frequencies s , where the imaginary part of the conductivity is 

large in comparison with the real one, are called magnetoimpurity 

[59, 60]. The physical reason for the existence of these waves is that the 

magnetic localization of electrons on impurities leads to an even greater 

limitation of the freedom of motion of electrons than only the magnetic 

field. Due to this, the role of dissipative processes decreases, and 

transparency windows are opened for new waves, which do not propagate 

in conductors without magnetoimpurity states. Electromagnetic waves in 

conductors with magnetoimpurity states of electrons were also studied in 

[91 – 94]. 

In the vicinity of frequencies 

        
1

2s cH s      

(   is the magnetic moment of the electron) in non-ferromagnetic metals 

there are weakly damped oscillations of the spin density of electrons, 

called magnetoimpurity spin waves [95 – 97]. They exist in narrow bands 

of transparency outside the Stoner sectors. Therefore, there is no 

collisionless damping of these waves. Their damping is determined by the 

width of the magnetoimpurity level and the electron collision frequency 
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due to potential scattering by impurities. Scattering of neutrons by 

magnetoimpurity spin waves was considered in Ref. [98]. 

In modern solid state physics, along with the traditional three-

dimensional electron systems that have just been discussed, low-

dimensional electron systems (two-dimensional – 2D, zero-dimensional – 

0D, and one-dimensional – 1D) are increasingly being studied [99]. The 

motion of conduction electrons belonging to low-dimensional systems , is 

limited by narrow quantum wells, which significantly determines both the 

energy spectrum unperturbed by the impurity potential and the nature of 

the formation of bound states. 

The purpose of this monograph is to present the theory of localization 

of conduction electrons in the aforementioned nanosystems within the 

framework of the method of local perturbations by I.M. Lifshits, as a 

general approach that is valid for any dimension and form of confinement 

potential in a magnetic field. The generality of the approach consists, in 

particular, in the fact that the derivation of the equation for the spectrum of 

impurity levels is carried out from “first principles”, which include the use 

of the equations of the quantum theory of scattering and functional 

methods as the initial ones. 

The universality of the consideration proposed here also lies in the fact 

that the type of nanosystem and the nature of the confinement potential are 

not concretized from the very beginning: consideration of a definitely 

chosen nanosystem (quantum dot, quantum wire, nanotube, thin ring, 

mesoscopic ring, two-dimensional electron gas) occurs only at the stage 

intermediate equations for overlap integrals. Among all possible models of 

the scattering potential of an impurity atom, a potential of a special form 

was chosen – the operator of the first rank of the theory of degenerate 

perturbations by I.M. Lifshits. Thus, the above considered magnetic 

localization of electrons on impurity atoms, caused by the quasi-one-

dimensional motion of electrons in a strong magnetic field, stimulated the 

study of magnetoimpurity states in low-dimensional systems (quantum 

dot, quantum wire, nanotube, thin ring, mesoscopic ring, two-dimensional 

electron gas) by the method of I.M. Lifshits local perturbations. 
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An introduction to the physics of low-dimensional systems is the 

excellent book by Davis [99]. This book examines a wide range of issues 

in solid state physics – from methods of creating low-dimensional 

structures to the theory of physical phenomena in them. The presentation 

of the material is available to the inexperienced reader, it is made at a high 

level. There are helpful exercises at the end of each chapter. The book 

focuses on the properties of quantum wells. Other structures are also being 

considered. Much attention is paid to electron-impurity scattering. 

Unfortunately, the author said little about quantum dots, wires and 

nanotubes. In the theory of electron scattering by impurity atoms, he 

limited himself to potential scattering, therefore the book does not contain 

a theory of local and resonance states of electrons in the field of isolated 

impurity atoms. 

1.1. Quantum Dots 

A quantum dot is a system of conductor electrons moving in a limited 

nanometer-sized volume. The problem of creating such a structure is to 

impose an additional potential (confinement potential) on the conduction 

electrons in the conductor, which limits their motion in all directions. This 

is achieved using a special molecular beam epitaxy technique. Using this 

technique, nanostructures with one-dimensional electron gas are created: 

quantum wires and zero-dimensional structures several nanometers in size, 

which are called quantum dots. It is important to emphasize that a 

quantum dot 10 nm in size contains about 100 atoms along its diameter, 

and although its inner part retains the crystalline symmetry of the bulk 

material, all the properties of this nanostructure strongly depend on the 

state of its surface. 
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It is well known [100] that the electron energy spectrum of an isolated 

quantum dot is a set of discrete dimensional quantization levels. 

Therefore, it can be considered as a giant artificial atom with controlled 

parameters such as the depth of the potential well, the nature of the 

confinement potential, the quantity of electrons, and the size of their 

localization region. 

The interest in quantum dots and other nanostructures is due to a 

number of reasons [100]. The influence of microelectronics on society is 

constantly growing. The successes of computer technology, informatics, 

radio-electronics are based on the achievements of microelectronics. It 

forms the element base of all modern devices of receiving, transmitting 

and processing information, automated control systems. The desire to 

reduce the size of devices, to increase their speed has led to the fact that 

solid state physics has turned into nanophysics – the physics of 

nanosystems. These systems are interesting not only because they are 

functional elements of modern gadgets and devices, but also because they 

exhibit quantum effects. It is impossible to predict the properties of future 

technical devices without the use of quantum mechanics. The study of 

quantum effects in semiconductor nanostructures gave impetus to the 

emergence of new classes of devices: resonant tunnel diodes, transistors, 

which have a high speed of response and a wide range of capabilities. The 

problems of creating quantum integrated circuits and quantum computers, 

the main elements of which will be quantum dots, wires, wells, and 

nanotubes, are intensively discussed. 

The properties of a nanosystem in a magnetic field are of particular 

interest. The presence of a magnetic field leads to the appearance of the 

hybridization effects of the dimensional and magnetic quantization of the 

motion of electrons. These effects include the quantum Hall effect in a 

two-dimensional electron gas. 

Theorists are interested in quantum dots because they are convenient 

objects for testing new calculation methods. Of particular interest are the 

properties of quantum dots with impurity atoms in a magnetic field. A 

small number of electrons in a quantum dot leads to the fact that even one 

impurity atom has a strong effect on its properties. In a limited volume of 

a quantum dot in a magnetic field, interesting effects of hybridization of 

spatial and magnetic quantization of the motion of electrons are 

manifested. These effects include the considered here localization of 

electrons on individual impurity atoms. 

The monograph [100] is devoted to the electron and optical properties 

of quantum dots and other low-dimensional semiconductor structures. This 

monograph discusses methods for producing quantum dots, ways to 
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implement their confinement, new types of optoelectronic devices 

containing quantum dots. Quantum dots in systems with two-dimensional 

electron gas (2DEG) at the GaAs-AlGaAs interface are considered. The 

Fock-Darwin parabolic confinement is used [101, 102]. The magnetic field 

is perpendicular to the 2DEG plane. The effect of one or several impurity 

atoms in quantum dots scattering electrons is taken into account. The 

author Ref. [100] limited himself to considering the impurity repulsive 

potential of the Gaussian type 

 
 

2

0 2
exp

r R
V r V

d

 
  
 
  

   0 0V  , 

where d  is the potential radius, R  is the position of the impurity atom. 

This potential does not localize electrons. The author of this monograph 

does not consider impurity states of electrons in a quantum dot. New 

methods (epitaxial growth, lithography method) and other methods for the 

synthesis of quantum dots are considered in monograph [103] and Petrov’s 

papers № 4, 5 (4. P.M. Petroff “Epitaxial Growth and Electronic Structure 

of Self-assembled Quantum Dots”; 5. P.M. Petroff “Self-assembled 

Quantum Dots Devices”) in the collection of articles [104]. These papers 

noted the properties of quantum dots that are important for practical 

applications: confinement of carriers and their pairs, which localizes 

particles; features of the density of states of electrons that bring a quantum 

dot closer to an isolated atom; multiparticle effects. It is noted that 

semiconductor quantum dots based on InAs, GaAs, InAs-GaAs can be 

used in devices and gadgets: detectors, batteries, lasers, transistors, 

quantum computers, generators of individual photons. 

The theory of quantum transport of electrons in systems with quantum 

dots, taking into account the electron-electron interaction, was considered 

in a review paper [105]. The authors of this paper examined low-

temperature electrical transport through a quantum dot, which is 

associated with two conducting contacts. The role of electron-electron 

interaction in this phenomenon is decisive. The conductance of the system 

is calculated in a wide temperature range. It is found out how the Coulomb 

blockade and Kondo scattering of electrons affect the temperature 

dependence of conductance. The influence of electron-electron interaction 

on weak localization and Aharonov-Bohm oscillations in quantum dots is 

considered in paper [106]. 

 



Nanosystems: Classification and Development of Research 13 

1.2. Quantum wires 

The methods of quantum field theory [107, 108] are actively used in 

the study of quantum wires and other one-dimensional systems [109 – 

112]. In this case, the following methods of theoretical physics are used: 

supersymmetry, bosonization, Luttinger fluid model, renormalization 

group, conformal symmetry. 

Monograph [111] considers strongly correlated electrons in low-

dimensional systems. The bosonization method is used, based on the idea 

of converting fermions into bosons, proposed by Jordan and Wigner [113]. 

Part III of this monograph is devoted to disordered one-dimensional 

systems. The potential scattering of electrons by an isolated impurity 

center in a three-dimensional sample is considered by the bosonization 

method. The phases of the scattered electron waves are obtained. They are 

compared with the results of the standard scattering theory. Local and 

quasilocal states of electrons in the field of isolated impurity atoms are not 

considered in this monograph. 

In monograph [112], in the theory of wire, the method used earlier in 

the study of the Luttinger fluid was used. A quantum wire is considered as 

an experimental realization of a Luttinger fluid. The electron-electron 

interaction is taken into account. The problem of electron confinement in 

the GaAs-AlGaAs system in a narrow channel is discussed. Quantization 

of the motion of electrons perpendicular to the channel is taken into 

account, which leads to the formation of minibands in the energy spectrum 

of electrons. The conditions are found under which one can restrict oneself 

to taking into account the influence of the lower miniband in the process 

of calculating the conductivity. The conductivity and conductance of wires 

are calculated in cases of isolated impurities and extended disorder. The 

properties of carbon nanotubes with metallic conductivity are considered 

on the basis of the Luttinger liquid method. 

1.3. Nanotubes 

Carbon nanotubes were discovered by Iijima [114] in 1991. Together 

with fullerenes and mesoporous carbon structures, they form a new class 

of nanomaterials, the properties of which differ significantly from the 

properties of other forms of carbon: graphite and diamond. Interest in 

these systems is due to their unique properties – high strength and 

conductivity, magnetic, optical, capillary properties. The technology for 

preparing nanotubes is being continuously improved [115]. They are 

usually obtained by rolling a graphene sheet into a tube. Depending on the 
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rolling method, the tube has metallic, semiconducting, or dielectric 

properties [116, 117]. Soon, semiconductor nanotubes were synthesized 

[118 – 120], as well as nanotubes with superlattices [121]. A new era in 

the physics of carbon nanotubes began in 2004 after obtaining a building 

material for them – graphene layers [122]. It turned out that the energy 

spectrum of electrons in graphene is Dirac [123, 124]. This affects, in 

particular, the spectrum of impurity states of electrons in graphene layers 

[125]. The method of controlled adsorption of atoms, as well as the 

lithographic method, make it possible to create superlattices on graphene 

layers and on carbon, as well as semiconducting nanotubes [126]. 

The prospects of using nanotubes in field effect transistors, highly 

sensitive sensors, liquid crystal displays, solar cells, and spin transistors 

are tempting in Ref. [127]. The possibility of using nanotubes as an 

element base for spintronics is discussed in Ref. [128]. They can be used 

for storing and transmitting information, as additives to polymers, as 

energy converters, in supercapacitors and quantum computers [129]. The 

question of the possibility of using nanotubes in medicine is being 

discussed in Ref. [130]. 

The review papers [131 – 133] discuss the results of studies by the 

authors of this monograph devoted to the study of thermodynamic 

characteristics and spectra of collective excitations (plasma and spin 

Landau-Silin waves) of an electron gas on the surface of a semiconductor 

nanotube with a superlattice in a magnetic field. 

1.4. Mesoscopic rings 

A good introduction to the physics of mesoscopic systems is Imri’s 

book [134]. In a small volume of the book (234 pp.), the author acquaints 

the reader with the basic concepts and phenomena of mesoscopic physics: 

Anderson localization, dephasing of wave functions by electron-electron 

interaction, quantum interference effects, quantum Hall effect, mesoscopic 

superconductivity, noise in mesoscopic systems, etc. The presentation of 

the book begins with a description of methods for synthesizing 

mesoscopic systems. The results of calculations of physical quantities are 

presented. More cumbersome mathematical transformations have been 

moved to the Appendix. 

1.5. 2D electron gas 

The increased interest of researchers in the physics of two-dimensional 

conductors is due to a number of circumstances. One has to deal with them 
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when studying a wide range of physical systems: two-dimensional metals 

and semiconductors [2, 135 – 138], semiconductor surfaces [139], 

inversion and accumulation layers at the semiconductor-dielectric 

interface [140], heterostructures with selective doping [141], thin films of 

metals [135, 141], layered compounds [141], electrons on the surface of 

liquid helium [141], high-temperature superconductors [142]. A number of 

phenomena have been discovered in two-dimensional conductors, the 

interest in which is still unabated. These include the quantum Hall effect 

[143 – 146], mesoscopic effects [2], and an unusual spectrum of two-

dimensional plasmons [140]. Two-dimensional conductors serve as the 

basis for many gadgets and devices of microelectronic technology. Suffice 

it to recall the field-effect transistor. Research over the past few decades 

has breathed new life into this important element of modern electronics. 

The advances in the technology of growing thin films with thicknesses up 

to atomic, along with the development of theoretical methods for studying 

condensed matter, continue to stimulate the development of this topical 

area of physics – the physics of two-dimensional electronic systems. 

Plasmons with an unusual non-activation spectrum in two-dimensional 

electron systems were predicted long ago [140, 147 – 149]. In 1977, they 

were discovered experimentally [150] in an inversion layer at the interface 

between silicon and silicon dioxide. Soon, two-dimensional 

magnetoplasmons were also discovered in an inversion layer placed in a 

magnetic field perpendicular to the layer [151]. Intensive study of 

magnetoplasma waves in two-dimensional conductors has been going on 

for several decades. In Ref. [152] considered a strictly two-dimensional 

electron gas embedded in a dielectric placed in a magnetic field 

perpendicular to the electron layer. A dispersion equation for 

magnetoplasmons propagating in the plane of the layer is obtained, and its 

solution is analyzed. In Ref. [153], the Fermi-liquid theory of 

magnetoplasma and spin waves in two-dimensional systems is 

constructed. Collisions of electrons with impurity atoms and the associated 

damping of magnetoplasmons are not considered in Refs [152, 153]. The 

connection between two-dimensional magnetoplasmons and phonons was 

studied in [154]. 

Physics of another type of collective excitations in two-dimensional 

non-ferromagnetic conductors (spin waves) is also intensively developing. 

A large number of papers are devoted to the calculation of the dynamic 

spin susceptibility of two-dimensional electrons, which appears in the 

dispersion equation for spin waves. The results of calculations of the static 

susceptibility of a free electron gas in a magnetic field perpendicular to the 

plane of electron motion are contained in Ref. [155]. The exact expression 
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for the dynamic spin susceptibility, as well as the density-density reaction 

function of a free degenerate electron gas, is given in 

Refs. [140, 156, 157]. The quantizing magnetic field was taken into 

account in Ref. [158]. The high-frequency asymptotics of the spin 

susceptibility of a two-dimensional Fermi liquid was obtained in 

Refs. [159, 160]. The influence of impurity atoms, potentially scattering 

conduction electrons, on the susceptibility was considered in Ref. [161]. 

The relaxation of the spin magnetization of two-dimensional electrons in a 

magnetic field, as well as the localization of magnetoplasma and spin 

excitations in such systems in the field of impurity atoms were studied in 

Refs. [162, 163]. The scattering of light by these excitations was also 

considered in Ref. [164, 165]. 

Despite the large number of papers devoted to magnetoplasma and spin 

excitations in two-dimensional disordered systems in a quantizing 

magnetic field, the problem of collective excitations in such systems 

cannot be considered finally solved. Usually, collisions of electrons with 

impurity atoms and crystal lattice defects of the sample are taken into 

account by introducing the collision frequency into the conductivity tensor 

and spin susceptibility, which is assumed to be constant. As a result, 

collisional damping of collective excitations appears, which dominates in 

those regions of frequencies and wave vectors where Landau damping is 

absent. This is permissible when electrons experience only potential 

scattering by impurity atoms. Meanwhile, the role of impurity atoms in 

conductors is more complex. It has long been known [8, 18] that 

impurities shift and broaden the energy levels of electrons and cause 

different types of localization in the system. In the energy spectrum of 

electrons, there are local and quasi-local states [8, 18], which must be 

taken into account when calculating the kinetic characteristics of 

conductors. Taking into account the localized states of quasiparticles is 

one of the important problems of quantum kinetics [8, 166, 167]. This 

problem is especially relevant in two-dimensional conductors. It is known 

[64] that, in the two-dimensional case, an arbitrarily weak attraction 

impurity is capable of forming a bound state of a particle. The 

corresponding local level is located at the edge of the conduction band. 

This state corresponds to the pole of the electron scattering amplitude by 

an isolated impurity atom located on the physical sheet of the Riemann 

surface of the amplitude as a function of the electron energy [168, 169]. 

The binding energy in the local state is exponentially small compared to 

the depth of the impurity potential well [64]. As noted recently, bound 

states have a significant effect on the low-temperature properties of two-

dimensional systems. The existence of such states means that it is 
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impossible to calculate the kinetic characteristics of a two-dimensional 

electron-impurity system on the basis of perturbation theory from the 

scattering impurity potential. Thus, it is necessary to use an exact equation 

for the scattering amplitude. 

As noticed earlier, the amplitude of scattering of quasiparticles by 

impurity centers in a solid is usually calculated using the method of local 

Lifshits perturbations [8, 18, 170] or the method of zero-radius potentials 

[68, 171]. The exact equation obtained by these methods for the amplitude 

of electron scattering by short-range impurity atoms was used to calculate 

the static conductivity of a two-dimensional electron gas [172]. In this 

paper, the features of the static conductivity of two-dimensional metals, 

inversion layers and heterojunctions, which cannot be obtained on the 

basis of perturbation theory, are predicted. 

In a quantizing magnetic field perpendicular to the plane of electron 

motion, there is a system of local levels alternating with Landau levels. 

Their positions in the case of short-range impurity potentials of various 

types were found by the method of local perturbations in [170, 173, 174]. 

Such a structure of the spectrum of an electron-impurity system manifests 

itself in optical experiments with a two-dimensional electron gas in a 

magnetic field [140]. 

Local impurity states have a significant effect not only on static kinetic 

coefficients, but also on high-frequency ones. High-frequency 

conductivity and spin susceptibility are included in the dispersion 

equations for magnetoplasma and spin waves. Therefore, one should 

expect a rearrangement of the spectrum of collective excitations in two-

dimensional conductors taking into account the impurity states of electrons 

in the presence of a magnetic field. Such a rearrangement takes place in 

the three-dimensional case [59 – 63]. 
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2.1. Local perturbations in metals and semiconductors 

In this subsection, following the book [26], the application 

demonstrates of the method of local perturbations by I.М. Lifshits for a 

simple example of a three-dimensional conducting crystal. In the case of 

an ideal crystal described by the Hamiltonian 0Ĥ , it is convenient to use 

the quasimomentum projections k  as quantum numbers: 

0
ˆ

k
H k k , (2.1.1) 

where 
k
  is the energy of the electron in the state k . However, it is 

convenient to take into account the presence of a local perturbation V  in 

the crystal using the site representation. The basic functions n  of this 

representation are localized at the lattice sites and have the form [3] 

i1
e ,nkR

k

n k
N


   (2.1.2) 

where nR  is the lattice vector, N  is the number of sites in the crystal. 

The orthogonality of the basis k  implies the orthogonality of the basis 

(2.1.2). The case of one energy band of an ideal crystal is considered. It 

should be emphasized that it is inconvenient to describe the eigenfunctions 

of the perturbed Hamiltonian 0
ˆ ˆ ˆH H V   using the quasimomentum. 

Consider the operator  
1

ˆ iE H 


  . In the site representation, it 

has the form of a matrix with elements 
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                                 
1

ˆ inmG E n E H m


   .              (2.1.3) 

This expression coincides with the Green’s function of the Schrödinger 

equation. The operator in Eq. (2.1.3) can be represented as a sum of an 

unperturbed term and a correction describing the perturbation by an 

impurity:

 

0 0

1 1 1 1ˆ
ˆ ˆ ˆ ˆi i i i

V
E H E H E H E H   

 
       

. 

If we take from this identity the matrix element  nmG E  between the 

states n  and m , then we can make sure that it satisfies the Dyson-

type equation: 

              0 0
nm nm np pl lm

pl

G E G E G E V G E  .             (2.1.4) 

Here ˆ
plV p V l  is the matrix element of the operator V̂  in the site 

representation, 
0
nmG  is the Green’s function for an ideal crystal: 
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
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  (2.1.5) 

Equation (2.1.4) can be rewritten symbolically: 

0 0ˆ ˆ ˆ ˆˆG G G VG  . (2.1.6) 

Its symbolic solution is: 

0 0 0 0

0 0

1 1

1 1
G G G G V G

G V G V
  

 
.  (2.1.7) 

It is known [3, 108] that the poles of the Green’s function give the 

spectrum of elementary excitations of the crystal. In Eq. (2.1.7), in 

addition to the poles of the 
0G -function, there are also poles 

 
1

01 G V


 . These poles contribute, due to the presence of impurities, 

to the excitation spectrum of the crystal [8, 13, 14, 16]. The equation 

whose solution these poles are is called the Lifshits equation [8, 18]: 

                              0det 1 0G E V  
 

.      (2 .1 .8)  
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Generally speaking, to solve this equation it is necessary to calculate the 

determinant of the matrix N N . This is a difficult task due to its 

excessive cumbersomeness. However, the perturbations V  is quasi-local. 

Its intensity decreases rapidly with distance from the impurity. This means 

that we can consider the impurity perturbation only in the region of the 

first few coordination spheres. In other words, instead of a matrix N N , 

we consider a matrix 0 0n n  (here 0n  is the number of atoms falling 

within the sphere of the perturbation). 

To begin with, consider the perturbation localized within the impurity 

atom. Let it be in a site 0n  . Then the perturbation matrix has the form 

 0 0 0nm n mV u   , (2.1.9) 

where 0u  characterizes the intensity of the impurity perturbation. 

Examples of such perturbations can be an impurity atom in a metal, with a 

potential screened by conduction electrons; or an atom that differs in mass 

from the environment (in this case, changes in the force constants of the 

lattice are neglected). 

Within the framework of perturbation (2.1.9), equation (2.1.4) takes 

the form: 

0 0
0 0 0 0

0 0

.
1

n m
nm nm

u G G
G G

u G
 


 (2.1.10) 

Here 

0
0 00

1 1
.
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 

  (2.1.11) 

From Eq. (2.1.10) it is easy to find the density of states     in the 

spectrum of single-particle excitations: 

   
1 ˆImSp .G E
N

 


  (2.1.12) 

The factor 1
N

 arises due to the normalization of the density of states per 

one atom of the matrix. The Spur included in Eq. (2.1.12) is easily 

calculated: 

0 0 00
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ˆ ˆSp Sp
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