
Quantum physics, Department of Physics, 6th semester. 

Lesson №7. One-dimensional movement in a field of piecewise continuous 

potentials(continuation). Schrodinger’s equation in momentum representation. 

Transfer-matrix: calculating of transmission coefficient, energy spectrum of 

periodic potentials.  

1. Hamiltonian in momentum representation for one-dimensional movement of the 

particle in stationary external field has the form 
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Thus, in p-representation operator of kinetic energy 
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Consequently, one-dimensional Schrodinger equation in p-representation has the form 
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where  C p  is a wave function in p-representation. 

Task 1. Analyze a solution of the energy levels problem  0E   for the particle in a 

δ-well ( ) ( )U x x   using p-representation. 

2. Transfer-matrix. Transfer-matrix method is convenient to use for one-dimensional 

problems with piecewise continuous potentials solving, if potential energy has 
translation symmetry everywhere, except finite region on real axis.  

2.1. Constraint matrix of local solutions. 

Let us introduce a constraint matrix of local solutions, which connect solutions of 

stationary Schrodinger equation in two related areas 1 and 2, if potential has a jump in 

potential energy at the border of these two areas.  
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4 coefficients here are connected with two conditions: 
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This connection can be written in matrix form 
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constraint matrix of two local solutions. 

2.3 Transfer-matrix 
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Boundary conditions for rectangular barrier (rectangular well) are  
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Boundary conditions for delta-potential ( ) ( )U x x a   are 
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The choice of local solutions should be such, that ˆDet 1T  . 

2.4 How to calculate the transmission coefficient D? 
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If 
2 0B   (there is no flow of particles from the right to the left), then 
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Task 2. Find the transmission coefficient of the delta-barrier ( ) ( )U x x  using 

transfer-matrix method.  

2.5. Periodic potential of N same “jumps” with periodic boundary conditions.  
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Dispersion equation 
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Task 3. Find the dispersion equation for Dirac potential «comb» with 
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3. Test (~ 20 minutes) – 15 points. 

Hometask HKK 2.48 (using transfer-matrix method), HKK 2.50 (using transfer-

matrix method). 

 

HКК –  Halitskii E.M., Karnakov B.M., Kohan V.I. Problems in Quantum Physics, 

1981 
Hr. –  Hrechko, Suhakov, Tomasevich, Fedorchenko Collection of theoretical physics 

problems, 1984 


